RBSE Solution for Class 6 Math Chapter 11 बीजगणित
RBSE Solution for Class 6 Math Chapter 11 बीजगणित
बीजगणित
बीजगणित
पाठ्य-पुस्तक पृष्ठ संख्या # 243-244
प्रश्न 1.
क्या आप F के प्रतिरूप बनाने के लिए अब कोई नियम लिख सकते हैं ?
हल :
F का प्रतिरूप बनाने के लिए प्रयुक्त तीलियों की संख्या
यदि F की संख्या को n से व्यक्त करें, तो
n = 1,2,3,………………..
अतः वांछित तीलियों की संख्या = 4n
प्रश्न 2.
तीलियों से बनाए जाने वाले वर्णमाला के अन्य अक्षरों और आकारों के बारे में सोचिए।
उदाहरणार्थ, U (∪), V (V), त्रिभुज (∆), वर्ग (₹) इत्यादि। इनमें से कोई पाँच अक्षर या आकार चुनिए और इनके तीलियों के प्रतिरूप बनाने के लिए आवश्यक तीलियों की संख्या के लिए नियम लिखिए।
हल :
(i) E के लिए
स्पष्ट है कि एक E बनाने के लिए 5 माचिस की तीलियों की आवश्यकता होती है।
∴ E के प्रतिरूप बनाने में प्रयुक्त माचिस की तीलियों की संख्या का नियम है
अभीष्ट तीलियों की संख्या = 5n, यहाँ n = 1, 2, 3, ……
(ii) U के लिए
आकृति से स्पष्ट है कि U बनाने के लिए 3 माचिस की तीलियों की आवश्यकता होती है।
अतः नियम होगा
माचिस की तीलियों की अभीष्ट संख्या = 3n,
यहाँ n = 1, 2, 3, ……
(iii) V के लिए
आकृति से स्पष्ट है कि V बनाने के लिए 2 माचिस की तीलियों की आवश्यकता होती है।
अतः नियम होगा
माचिस की तीलियों की अभीष्ट संख्या = 2n,
यहाँ n = 1, 2, 3, ………
(iv) ∆ के लिए
आकृति से स्पष्ट है कि एक त्रिभुज बनाने के लिए तीन माचिस की तीलियों की आवश्यकता होती है।
अतः नियम होगा
माचिस की तीलियों की अभीष्ट संख्या = 3n,
यहाँ n = 1, 2, 3, ………
(v) ₹ के लिए
आकृति से स्पष्ट है कि एक वर्ग बनाने के लिए 4 माचिस की तीलियों की आवश्यकता होती है।
अतः नियम होगा
माचिस की तीलियों की अभीष्ट संख्या = 4n,
यहाँ n = 1, 2, 3, ……
बीजगणित Ex 11.1
पाठ्य-पुस्तक पृष्ठ संख्या # 246-247
प्रश्न 1.
तीलियों से प्रतिरूप बनाने के लिए आवश्यक तीलियों की संख्या के लिए नियम ज्ञात कीजिए। नियम लिखने के लिए एक चर का प्रयोग कीजिए।
(a) अक्षर T का T के रूप में तीलियों से प्रतिरूप
(b) अक्षर Z का Z के रूप में तीलियों से प्रतिरूप
(c) अक्षर U का U के रूप में तीलियों से प्रतिरूप
(d) अक्षर V का V के रूप में तीलियों से प्रतिरूप
(e) अक्षर E का E के रूप में तीलियों से प्रतिरूप
(f) अक्षर S का S के रूप में तीलियों से प्रतिरूप
(g) अक्षर A का A के रूप में तीलियों से प्रतिरूप
हल :
(a)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 2 या 2n
n = 2 के लिए = 4 या 2n
n = 3 के लिए = 6 या 2n
∴नियम : 2n
(b)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 3 या 3n
n = 2 के लिए = 6 या 3n
n = 3 के लिए = 9 या 3n
∴नियम : 3n
(c)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 3 या 3n
n = 2 के लिए = 6 या 3n
n = 3 के लिए = 9 या 3n
∴नियम : 3n
(d)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 2 या 2n
n = 2 के लिए = 4 या 2n
n = 3 के लिए = 6 या 2n
∴नियम : 2n
(e)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 5 या 5n
n = 2 के लिए = 10 या 5n
n = 3 के लिए = 15 या 5n
∴नियम : 5n
(f)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 5 या 5n
n = 2 के लिए = 10 या 5n
n = 3 के लिए = 15 या 5n
∴नियम : 5n
(g)
आवश्यक तीलियों की संख्या
n = 1 के लिए = 6 या 6n
n = 2 के लिए = 12 या 6n
n = 3 के लिए = 18 या 6n
∴नियम : 6n
प्रश्न 2.
हम अक्षर L, C और F के प्रतिरूपों के लिए नियमों को पहले से जानते हैं। ऊपर प्रश्न 1 में दिए कुछ अक्षरों से वही नियम प्राप्त होता है जो L द्वारा प्राप्त हुआ था। ये अक्षर कौन-कौन-से हैं ? ऐसा क्यों होता है ?
हल :
माचिस की तीलियों से संख्या प्राप्त करने के लिए नियम निम्नांकित हैं :
अक्षर L के लिए 2n
अक्षर C के लिए 3n
अक्षर V के लिए 2n
अक्षर U के लिए 3n
अक्षर T के लिए 2n
अक्षर F के लिए 4n
∴यह L, V और T के लिए समान है। इन सभी अक्षरों में माचिस की तीलियों की आवश्यक संख्या 2 है।
प्रश्न 3.
किसी परेड में कैडेट (Cadets) मार्च (march) कर रहे हैं। एक पंक्ति में 5 कैडेट हैं। यदि पंक्तियों की संख्या ज्ञात हो, तो कैडेटों की संख्या ज्ञात करने के लिए क्या नियम हैं ?
(पंक्तियों की संख्या के लिए n का प्रयोग कीजिए।)
हल :
पंक्तियों की संख्या = n
प्रत्येक पंक्ति में कैडेट की संख्या = 5
अतः नियम : परेड में कैडेटों की संख्या = 5n
प्रश्न 4.
एक पेटी में 50 आम हैं। आप पेटियों की संख्या के पदों में आमों की कुल संख्या को किस प्रकार लिखेंगे ? (पेटियों की संख्या के लिए b का प्रयोग कीजिए)।
हल :
एक पेटी में आमों की संख्या = 50
पेटियों की संख्या = b
∴आमों की कुल संख्या = 50b
प्रश्न 5.
शिक्षक प्रत्येक विद्यार्थी को 5 पेन्सिल देता है। विद्याथियों की संख्या ज्ञात होने पर, क्या आप कुल वांछित पेन्सिलों की संख्या बता सकते हैं ? (विद्यार्थियों की संख्या के लिए s का प्रयोग कीजिए।)
हल :
विद्यार्थियों की संख्या = s
प्रत्येक विद्यार्थी को पेन्सिल = 5
∴कुल पेन्सिलों की संख्या = 5s
प्रश्न 6.
एक चिड़िया 1 मिनट में 1 किलोमीटर उड़ती है। क्या आप चिड़िया द्वारा तय की गई दूरी को (मिनटों में) उसके उड़ने के समय के पदों में व्यक्त कर सकते हैं ? (मिनटों में उड़ने के समय के लिए t का प्रयोग कीजिए।)
हल :
चिड़िया 1 मिनट में एक किलोमीटर उड़ती है।
अब माना कि वह t मिनट उड़ती है
∴t मिनट में चिड़िया द्वारा तय की गई कुल दूरी
= 1 x t किलोमीटर
= t किलोमीटर
प्रश्न 7.
राधा बिन्दुओं (Dots) से एक रंगोली बना रही है। (खड़िया के पाउडर की सहायता से बिन्दुओं को जोड़कर रेखाओं का एक सुन्दर प्रतिरूप बनाना, जैसे आकृति में है।) उसके पास एक पंक्ति में 8 बिन्दु हैं। r पंक्तियों की रंगोली में कितने बिन्दु होंगे? यदि 8 पंक्तियाँ हों, तो कितने बिन्दु होंगे? यदि 10 पंक्तियाँ हों, तो कितने बिन्दु होंगे?
हल :
एक पंक्ति में बिन्दु = 8
पंक्तियों की संख्या = r
r पंक्तियों में बिन्दुओं की संख्या = 8r
8 पंक्तियों में बिन्दुओं की संख्या = 8 x 8 = 64
और, 10 पंक्तियों में बिन्दुओं की संख्या = 8 x 10 = 80
प्रश्न 8.
लीला राधा की छोटी बहन है। लीला राधा से 4 वर्ष छोटी है। क्या आप लीला की आयु राधा की आयु के पदों में लिख सकते हैं? राधा की आयु x वर्ष है।
हल :
राधा की आयु = x वर्ष
चूँकि लीला की आयु = राधा की आयु – 4 वर्ष
∴ लीला की आयु = x वर्ष – 4 वर्ष
= (x – 4) वर्ष
प्रश्न 9.
माँ ने लड्डू बनाए हैं। उन्होंने कुछ लड्डू मेहमानों और परिवार के सदस्यों को दिए। फिर भी 5 लड्डू शेष रह गये हैं। यदि माँ ने l लड्डू दे दिए हों, तो उसने कुल कितने लड्डू बनाए थे ?
हल :
शेष रहे लड्डुओं की संख्या = 5
मेहमानों और परिवार के सदस्यों को दिए लड्डूओं की संख्या = l
∴माँ द्वारा बनाए लड्डुओं की संख्या = l + 5
प्रश्न 10.
सन्तरों को बड़ी पेटियों में से छोटी पेटियों में रखा जाना है। जब एक बड़ी पेटी को खाली किया जाता है, तो उसके सन्तरों से दो छोटी पेटियाँ भर जाती हैं और फिर भी 10 सन्तरे शेष रह जाते हैं। यदि एक छोटी पेटी में सन्तरों की संख्या को x लिया जाए तो बड़ी पेटी में सन्तरों की संख्या क्या है?
हल :
बड़ी पेटी में सन्तरों की संख्या = 2 x छोटी पेटी में सन्तरों की संख्या + शेष सन्तरों की संख्या
= 2x + 10
प्रश्न 11.
(a) तीलियों से बने हुए वर्गों के नीचे दिए प्रतिरूपों को देखिए (निम्न आकृति)। ये वर्ग अलग-अलग नहीं हैं। दो संलग्न वर्गों में एक तीली उभयनिष्ठ है। इस प्रतिरूप को देखिए और वह नियम ज्ञात कीजिए जो वर्गों की संख्या के पदों में आवश्यक तीलियों की संख्या देता है। (संकेत : यदि आप अंतिम ऊर्ध्वाधर तीली को हटा दें, तो आपको C का प्रतिरूप प्राप्त हो जाएगा।)
(b) निम्न आकृति तीलियों से बना त्रिभुजों का एक प्रतिरूप दर्शा रही है। उपर्युक्त प्रश्न 11(a) की तरह, वह व्यापक नियम ज्ञात कीजिए जो त्रिभुजों की संख्या के पदों में आवश्यक तीलियों की संख्या देता है।
हल :
माना कि वर्गों की संख्या = n
(a) ∴ जबकि n = 1,
तीलियों की संख्या = 4 या 3 x 1 + 1 = 3n + 1
जबकि n = 2,
तीलियों की संख्या = 7 या 3 x 2 + 1 = 3n + 1
जबकि n = 3,
तीलियों की संख्या = 10 या 3 x 3 + 1 = 3n + 1
जबकि n = 4,
तीलियों की संख्या = 13 या 3 x 4 + 1 = 3n + 1
अत: वांछित नियम : 3n + 1
(b) माना कि त्रिभुजों की संख्या = n
जबकि n = 1,
तीलियों की संख्या = 3 या 2 x 1 + 1 = 2n + 1
जबकि n = 2,
तीलियों की संख्या = 5 या 2 x 2 + 1 = 2n + 1
जबकि n = 3,
तीलियों की संख्या = 7 या 2 x 3 + 1 = 2n + 1
जबकि n = 4,
तीलियों की संख्या = 9 या 2 x 4 + 1 = 2n + 1
अतः वांछित नियम : 2n + 1
बीजगणित Ex 11.2
पाठ्य-पुस्तक पृष्ठ संख्या # 250-251
प्रश्न 1.
एक समबाहु त्रिभुज की भुजा को l से दर्शाया गया है। इस समबाहु त्रिभुज के परिमाप को l का प्रयोग करते हुए व्यक्त कीजिए।
हल :
∵समबाहु त्रिभुज की भुजा = l
∴इसका परिमाप = l + l + l = 3l
प्रश्न 2.
एक समषड्भुज (Regular hexagon) की एक भुजा को l से व्यक्त किया गया है (पाठ्य-पुस्तक में दी गई आकृति।) l का प्रयोग करते हुए इस षड्भुज के परिमाप को व्यक्त कीजिए। (संकेत : एक समषड्भुज की सभी 6 भुजाएँ बराबर होती हैं और सभी कोण बराबर होते हैं।)
हल :
∵ समषड्भुज की सभी भुजाएँ बराबर हैं।
और समषड्भुज की प्रत्येक भुजा = l
∴ इसका परिमाप = l + l + l + l + l + l
= 61
प्रश्न 3.
घन (cube) एक त्रिविमीय (three dimensional) आकृति होती है जैसा कि पाठ्य-पुस्तक में दी गई आकृति में दिखाया गया है। इसके 6 फलक होते हैं और ये सभी सर्वसम (identical) वर्ग होते हैं। घन के एक किनारे की लम्बाई l से दी जाती है। घन के किनारों की कुल लम्बाई के लिए एक सूत्र ज्ञात कीजिए।
हल :
घन के 6 सर्वसम फलक हैं। घन के 12 किनारे हैं।
प्रत्येक किनारे की लम्बाई l समान है।
∴ घन के किनारों की कुल लम्बाई = 12 x l
= 12l
प्रश्न 4.
वृत्त का एक व्यास वह रेखाखण्ड है जो वृत्त पर स्थित दो बिन्दुओं को जोड़ता है और उसके केन्द्र से होकर जाता है। पाठ्य-पुस्तक में दी गई आकृति में AB वृत्त का व्यास है और C उसका केन्द्र है। वृत्त के व्यास (d) को उसकी त्रिज्या (r) के पदों में व्यक्त कीजिए।
हल :
वृत्त की त्रिज्या = r तथा व्यास = d
चूँकि वृत्त का व्यास त्रिज्या का दो गुना होता है।
∴व्यास = 2 x त्रिज्या
या d = 2 x r या d = 2r
प्रश्न 5.
तीन संख्याओं 14, 27 और 13 के योग पर विचार कीजिए। हम यह योग दो प्रकार से ज्ञात कर सकते हैं:
(a) हम पहले 14 और 27 को जोड़कर 41 प्राप्त कर सकते हैं और फिर 41 में 13 जोड़कर 54 प्राप्त कर सकते हैं। या
(b) हम पहले 27 और 13 को जोड़कर 40 प्राप्त कर सकते हैं और फिर उसे 14 में जोड़कर कुल योग 54 प्राप्त कर सकते हैं। इस प्रकार, (14 + 27) + 13 = 14 + (27 + 13) हुआ।
ऐसा किन्हीं भी तीन संख्याओं के लिए किया जा सकता है। यह गुण संख्याओं के योग का साहचर्य (associative) गुण कहलाता है। इस गुण को जिसे हम पूर्ण संख्याओं के अध्याय में पढ़ चुके हैं, चर a, b और c का प्रयोग करते हुए, एक व्यापक रूप में व्यक्त कीजिए।
हल :
माना कि तीन संख्याएँ a, b और c हैं।
∴योग के साहचर्य नियम के अनुसार, हम a, b और c को । निरूपित कर सकते हैं
(a + b) + c = a + (b + c)
बीजगणित Ex 11.3
पाठ्य-पुस्तक पृष्ठ संख्या # 253-254
प्रश्न 1.
आप तीन संख्या 5, 7 और 8 से संख्याओं वाले (चर नहीं) जितने व्यंजक बना सकते हैं बनाइए। एक संख्या एक से अधिक बार प्रयोग नहीं की जानी चाहिए। केवल योग, व्यवकलन (घटाना) और गुणन का ही प्रयोग करें। (संकेत : तीन सम्भावित व्यंजक 5 + (8 – 7), 5 – (8 – 7) और 5 x 8 + 7 हैं। अन्य व्यंजक बनाइए।)
हल :
अन्य सम्भावित व्यंजक
(i) 5 + (7 + 8)
(ii) 7 x 5 + 8
(iii) (8 – 5) x 7
(iv) (7 – 5) x 8
(v) (5 x 7) – 8
(vi) (8 – 7) + 5
(vii) 8 – 5 + 7
(viii) (8 x 7) + 5
प्रश्न 2.
निम्नलिखित में से कौन-से व्यंजक केवल संख्याओं वाले व्यंजक ही हैं ?
(a) y + 3
(b) 7 × 20 – 8
(c) 5 (21 – 7) + 7 × 2
(d) 5
(e) 3x
(f) 5 – 5n
(g) 7 × 20 – 5 × 10 – 45 + P
उत्तर-
व्यंजक (c) और (d) में कोई चर नहीं है।
अतः व्यंजक (c) और (d) केवल संख्याओं वाले व्यंजक है।
प्रश्न 3.
निम्न व्यंजकों को बनाने में प्रयुक्त संक्रियाओं (योग, व्यवकलन, गुणन, विभाजन) को पहचानिए (छाँटिए) और बताइए कि ये व्यंजक किस प्रकार बनाए गए हैं ?
(a) z + 1, z – 1, y + 17, y – 17
(b) 17y, , 5z
(c) 2y + 17, 2y – 17
(d) 7m, – 7m + 3, – 7m – 3.
हल:
प्रश्न 4.
निम्नलिखित स्थितियों के लिए व्यंजक दीजिए:
(a) p में 7 जोड़ना
(b) p में से 7 घटाना
(c) p को 7 से गुणा करना
(d) p को 7 से भाग देना
(e) – m में से 7 घटाना
(f) – p को 5 से गुणा करना
(g) – p को 5 से भाग देना
(h) p को – 5 से गुणा करना
उत्तर-
प्रश्न 5.
निम्नलिखित स्थितियों के लिए व्यंजक दीजिए:
(a) 2m में 11 जोड़ना
(b) 2m में से 11 घटाना
(c) y के 5 गुने में 3 जोड़ना
(d) y के 5 गुने में से 3 घटाना
(e) y का – 8 से गुणा
(f) y को – 8 से गुणा करके परिणाम में 5 जोड़ना
(g) y को 5 से गुणा करके परिणाम को 16 में से घटाना
(h) y को -5 से गुणा करके परिणाम को 16 में जोड़ना
उत्तर-
व्यंजक
(a) 2m + 11
(b) 2m – 11
(c) (5 × y) + 3 = 5y + 3
(d) (5 × y) – 3 = 5y – 3.
(e) y × (-8) = – 8y
(f) y × (-8) + 5 = – 8y + 5
(g) 16 – (5 × y) = 16 – 5y
(h) 16 + [y × (-5)] = 16 +(-5y) = – 5y + 16
प्रश्न 6.
(a) t और 4 का प्रयोग करके व्यंजक बनाइए। एक से अधिक संख्या संक्रिया का प्रयोग न करें। प्रत्येक व्यंजक में t अवश्य होना चाहिए।
(b) y, 2 और 7 का प्रयोग करके व्यंजक बनाइए। प्रत्येक व्यंजक में y अवश्य होना चाहिए। केवल दो संख्या संक्रियाओं का प्रयोग करें। ये भिन्न-भिन्न होनी चाहिए।
हल :
बीजगणित Ex 11.4
पाठ्य-पुस्तक पृष्ठ संख्या # 255-256
प्रश्न 1.
निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) सरिता की वर्तमान आयु y वर्ष लीजिए।
(i) आज से 5 वर्ष बाद उसकी आयु क्या होगी ?
(ii) 3 वर्ष पहले उसकी आयु क्या थी?
(iii) सरिता के दादाजी की आयु उसकी आयु की 6 गुनी है। उसके दादाजी की क्या आयु है ?
(iv) उसकी दादीजी दादाजी से 2 वर्ष छोटी है। दादीजी की आयु क्या है ?
(v) सरिता के पिता की आयु सरिता की आयु के तीन गुने से 5 वर्ष अधिक है। उसके पिता की आयु क्या है ?
(b) एक आयताकार हॉल की लम्बाई उसकी चौड़ाई के तिगुने से 4 मीटर कम है। यदि चौड़ाई b मीटर है, तो लम्बाई क्या है ?
(c) एक आयताकार बक्स की चौड़ाई h सेमी है। इसकी लम्बाई, ऊँचाई की 5 गुनी है और चौड़ाई लम्बाई से 10 सेमी कम है। बक्स की लम्बाई और चौड़ाई को ऊँचाई के पदों में व्यक्त कीजिए।
(d) मीना, बीना और लीना पहाड़ी की चोटी पर पहुँचने के लिए सीढ़ियाँ चढ़ रही हैं। मीना सीढ़ी s पर है। बीना मीना से 8 सीढ़ियाँ आगे है और लीना मीना से 7 सीढ़ियाँ पीछे है। बीना और लीना कहाँ पर हैं ? चोटी पर पहुँचने के लिए कुल सीढ़ियाँ मीना द्वारा चढ़ी गई सीढ़ियों की संख्या के चार गुने से 10 कम हैं। सीढ़ियों की कुल संख्या को s के पदों में व्यक्त कीजिए।
(e) एक बस v किमी प्रति घण्टा की चाल से चल रही है। यह दासपुर से बीसपुर जा रही है। बस के 5 घण्टे चलने के बाद भी बीसपुर 20 किमी दूर रह जाता है। दासपुर से बीसपुर की दूरी क्या है ? इसे v का प्रयोग करते हुए व्यक्त कीजिए।
उत्तर-
(a) (i) सरिता की वर्तमान आयु = y वर्ष
5 वर्ष बाद उसकी आयु = y + 5 वर्ष
(ii) 3 वर्ष पहले उसकी आयु = y – 3 वर्ष
(iii) दादाजी की आयु = 6 x सरिता की वर्तमान आयु
= 6y वर्ष
(iv) दादीजी की आयु = दादाजी की आयु – 2
= 6y – 2 वर्ष
(v) सरिता के पिता की आयु = 3 x सरिता की आयु + 5 वर्ष
= 3y + 5 वर्ष
(b) ∵ हॉल की चौड़ाई = b मीटर
लम्बाई = 3 x चौड़ाई – 4 मीटर
= 3b – 4 मीटर
(c) माना कि बक्स की ऊँचाई = h सेमी
∴ बक्स की लम्बाई = 5 x चौड़ाई = 5h सेमी
और बक्स की चौड़ाई = (लम्बाई – 10) सेमी
= (5h – 10) सेमी
(d) ∵ मीना सीढ़ी s पर है।
∴ बीना की स्थिति = s + 8 सीढ़ियाँ
और लीना की स्थिति = s – 7 सीढ़ियाँ
∴ चोटी पर पहुँचने के लिए कुल सीढ़ियाँ
= 4 x मीना द्वारा चढ़ी गई सीढ़ियों की संख्या – 10
= 4 x s – 10
= 4s – 10 सीढ़ियाँ
(e) बस की चाल = v किमी/घण्टा
5 घण्टे में चली गई दूरी = 5 x v किमी
= 5v किमी
∴ बीसपुर की दूरी = 5v + 20 किमी
अतः दासपुर से बीसपुर की दूरी = 5v + 20 किमी
प्रश्न 2.
व्यंजकों के प्रयोग से बने निम्न कथनों को साधारण भाषा के कथनों में बदलिए :
(उदाहरणार्थ, एक क्रिकेट मैच में सलीम ने r रन बनाए और नलिन ने (r + 15) रन बनाए। साधारण भाषा में, नलिन ने सलीम से 15 अधिक बनाए हैं।)
(a) एक अभ्यास पुस्तिका का मूल्य Rs p है। एक पुस्तक का मूल्य Rs 3p है।
(b) टोनी ने मेज पर q कंचे रखे। उसके पास डिब्बे में 8q कंचे हैं।
(c) हमारी कक्षा में n विद्यार्थी हैं। स्कूल में 20n विद्यार्थी हैं।
(d) जग्गू की आयु z वर्ष है। उसके चाचा की आयु 4z वर्ष है और उसकी चाची की आयु (4z – 3) वर्ष है।
(e) बिन्दुओं (dots) की एक व्यवस्था में r पंक्तियाँ हैं। प्रत्येक पंक्ति में 5 बिन्दु हैं।
उत्तर-
(a) पुस्तक का मूल्य अभ्यास-पुस्तिका के मूल्य का तीन गुना है।
(b) टोनी के डिब्बे में मेज पर रखे कंचों के 8 गुने कंचे हैं।
(c) स्कूल के विद्यार्थियों की कुल संख्या हमारी कक्षा के विद्यार्थियों की बीस गुनी है।
(d) जग्गू के चाचा की आयु जग्गू की आयु की 4 गुनी है और जग्गू की चाची की आयु उसके चाचा से 3 वर्ष कम है।
(e) बिन्दुओं की संख्या पंक्तियों की संख्या की 5 गुनी है।
प्रश्न 3.
(a) मुन्नू की आयु x वर्ष दी हुई है। क्या आप अनुमान लगा सकते हैं कि (x – 2) क्या दर्शाएगा?
(संकेत : मुन्नू के छोटे भाई के बारे में सोचिए।) क्या आप अनुमान लगा सकते हैं कि (x + 4) क्या दर्शाएगा और 3x + 7 क्या दर्शाएगा?
(b) सारा की वर्तमान आयु y वर्ष दी हुई है। उसकी भविष्य की आयु और पिछली आयु के बारे में सोचिए। निम्नलिखित व्यंजक क्या सूचित करते हैं?
उत्तर-
(a) (i) x – 2 सम्भवतः उसके छोटे भाई या बहन की आयु दर्शाएगा?
(ii) (x + 4) उसके बड़े भाई की आयु दर्शाएगा।
(iii) (3x + 7) उसकी माँ की आयु दर्शाएगा।
मुन्नू की माँ की आयु उसकी आयु के तीन गुने से 7 वर्ष अधिक है।
(b) (i) व्यंजक (y + 7)7 वर्ष बाद सारा की आयु दर्शाता है। व्यंजक (y – 3), 3 वर्ष पूर्व सारा की आयु दर्शाता है।
पाठ्य-पुस्तक पृष्ठ संख्या # 258
प्रश्न 1.
समीकरण के कुछ उदाहरण नीचे दिए जा रहे हैं। (कुछ समीकरणों में सम्बद्ध चर भी दिए गए हैं।)
वांछित रिक्त स्थानों को भरिए :
हल :
- x + 10 = 30 (चर x)
- p – 3 = 7 (चर p)
- 3n = 21 (चर n)
- t5 = 4 (चर t)
- 2l + 3 = 7 (चर l)
- 2m – 3 = 5 (चर m)
पाठ्य-पुस्तक पृष्ठ संख्या # 259
प्रश्न 1.
अब निम्नलिखित सारणी की प्रविष्टियों को पूरा कीजिए और स्पष्ट कीजिए कि आपके उत्तर हाँ/नहीं क्यों हैं ?
हल :
बीजगणित Ex 11.5
पाठ्य-पुस्तक पृष्ठ संख्या # 260-262
प्रश्न 1.
बताइए कि निम्नलिखित में से कौन-से कथन समीकरण (चर संख्याओं के) हैं ? सकारण उत्तर दीजिए। समीकरण में सम्बद्ध चर भी लिखिए।
उत्तर-
(a) चर x में समीकरण है।
(b) यह समीकरण नहीं है, क्योंकि इसमें = का चिह्न नहीं है।
(c) यह समीकरण नहीं है, क्योंकि इसमें चर नहीं है।
(d) यह समीकरण नहीं है, क्योंकि इसमें चर नहीं है।
(e) यह चर x में समीकरण है।
(f) यह चर x में समीकरण है।
(g) यह समीकरण नहीं है, क्योंकि इसमें = का चिह्न नहीं है।
(h) यह चर n में समीकरण है।
(i) यह समीकरण नहीं है, क्योंकि इसमें चर नहीं है।
(j) चह चर p में समीकरण है।
(k) चह चर y में समीकरण है।
(l) यह समीकरण नहीं है, क्योंकि इसमें = का चिह्न नहीं है।
(m) यह समीकरण नहीं है, क्योंकि इसमें = का चिह्न नहीं है।
(n) यह समीकरण नहीं है, क्योंकि इसमें चर नहीं है।
(o) यह चर x में समीकरण है।
प्रश्न 2.
सारणी के तीसरे स्तम्भ में प्रविष्टियों को पूरा कीजिए
हल :
प्रश्न 3.
प्रत्येक समीकरण के सम्मुख कोष्ठकों में दिए मानों में से समीकरण का हल चुनिए। दर्शाइए कि अन्य मान समीकरण को सन्तुष्ट नहीं करते हैं।
(a) 5m = 60 (10, 5, 12, 15)
(b) n + 12 = 20 (12, 8, 20, 0)
(c) p – 5 = 5 (0, 10, 5, -5)
(d) =7 (7, 2, 10, 14)
(e) r – 4 = 0 (4, -4, 8, 0)
(f) x + 4 = 2 (-2, 0, 2, 4)
हल :
(a) m = 10 के लिए,
L.H.S. = 5 x 10 = 50
और R.H.S. = 60
∵L.H.S. ≠ R.H.S.
∴m = 10 समीकरण को सन्तुष्ट नहीं करता है।
m = 5 के लिए, L.H.S. = 5 x 5 = 25
और R.H.S. = 60
∵L.H.S. ≠ R.H.S.
∴m = 5 समीकरण को सन्तुष्ट नहीं करता है।
m = 12 के लिए,
L.H.S. = 5 x 12 = 60
और R.H.S. = 60
∵L.H.S. = R.H.S.
∴m = 12 समीकरण का हल है।
m = 15 के लिए,
L.H.S. = 5 x 15 = 75
और R.H.S. = 60
∵L.H.S. ≠ R.H.S.
∴m = 15 समीकरण को सन्तुष्ट नहीं करता है।
(b) n = 12 के लिए,
L.H.S. = 12 + 12 = 24
और R.H.S. = 20
∵L.H.S. ≠ R.H.S.
∴n = 12 समीकरण को सन्तुष्ट नहीं करता है।
n = 8 के लिए, L.H.S. = 8 + 12 = 20
और R.H.S. = 20
∵L.H.S. = R.H.S.
∴n = 8 समीकरण का हल है।
n = 20 के लिए,
L.H.S. = 20 + 12 = 32
और R.H.S. =20
∵L.H.S. ≠ R.H.S.
∴n = 20, समीकरण को सन्तुष्ट नहीं करता है।
n = 0 के लिए,
L.H.S. = 0 + 12 = 12
और R.H.S.= 20
∵L.H.S. ≠ R.H.S.
∴n = 0 समीकरण को सन्तुष्ट नहीं करता है।
(c) p = 0 के लिए,
L.H.S. = 0 – 5 = -5
और R.H.S. = 5
∵L.H.S. ≠ R.H.S.
∴p = 0 समीकरण को सन्तुष्ट नहीं करता है।
p = 10 के लिए,
L.H.S. = 10 – 5 = 5
और R.H.S. = 5
∵L.H.S. = R.H.S.
∴p = 10 समीकरण का हल है।
p = 5 के लिए, L.H.S. = 5 – 5 = 0
और R.H.S. = 5
∵L.H.S. ≠ R.H.S.
∴p = 5, समीकरण को सन्तुष्ट नहीं करता है।
p = -5 के लिए,
L.H.S. = – 5 – 5 = -10
और R.H.S. = 5
∵L.H.S. ≠ R.H.S.
∴p = – 5 समीकरण को सन्तुष्ट नहीं करता है।
(d) q = 7 के लिए,
(e) r = 4 के लिए,
L.H.S. = 4 – 4 = 0
और R.H.S. = 0
∵L.H.S. = R.H.S.
∴r = 4 समीकरण का हल है।
r = -4 के लिए,
L.H.S. = -4 – 4 = -8
और R.H.S. = 0
∵L.H.S. ≠ R.H.S.
∴r = -4 समीकरण को सन्तुष्ट नहीं करता है।
r = 8 के लिए,
L.H.S. = 8 – 4 = 4
और R.H.S. = 0
∵L.H.S. ≠ R.H.S.
∴r = 8 समीकरण को सन्तुष्ट नहीं करता है।
r = 0 के लिए,
L.H.S. = 0 – 4 = – 4
और R.H.S. = 0
∵L.H.S. ≠ R.H.S.
∴r = 0 समीकरण को सन्तुष्ट नहीं करता है।
(f) x = – 2 के लिए,
L.H.S. = – 2 + 4 = 2
और R.H.S. = 2
∵L.H.S. = R.H.S.
∴x = – 2 समीकरण का हल है।
x = 0 के लिए,
L.H.S. = 0 + 4 = 4
और R.H.S. =2
∵L.H.S. ≠ R.H.S.
∴x = 0 समीकरण को सन्तुष्ट नहीं करता है।
x = 2 के लिए,
L.H.S. = 2 + 4 = 6
और R.H.S. = 2
∵L.H.S. ≠ R.H.S.
∴x = 2 समीकरण को सन्तुष्ट नहीं करता है।
x = 4 के लिए,
L.H.S. = 4 + 4 = 8
और R.H.S. = 2
∵L.H.S. ≠ R.H.S.
∴x = 4 समीकरण को सन्तुष्ट नहीं करता है।
प्रश्न 4.
(a) नीचे दी हुई सारणी को पूरा कीजिए और इस सारणी को देखकर ही समीकरण m + 10 = 16 का हल ज्ञात कीजिए।
(b) नीचे दी सारणी को पूरा कीजिए और इस सारणी को देखकर ही समीकरण 5t = 35 का हल ज्ञात कीजिए।
(c) सारणी को पूरा कीजिए और समीकरण z3 = 4 का हल ज्ञात कीजिए
(d) सारणी को पूरा कीजिए और समीकरण m – 7 = 3 का हल ज्ञात कीजिए
हल :
(a) सारणी को पूरा करने पर
सारणी से स्पष्ट है कि m = 6 समीकरण m + 10 = 16 को सन्तुष्ट करता है। अतः m = 6 समीकरण का हल है।
(b) सारणी को पूरा करने पर,
सारणी से स्पष्ट है कि t = 7 समीकरण 5t = 35 को सन्तुष्ट करता है। अत: t = 7 समीकरण का हल है।
(c) सारणी को पूरा करने पर,
अतः z = 12 समीकरण का हल है।
(d) सारणी को पूरा करने पर,
सारणी से स्पष्ट है कि m = 10 समीकरण m – 7 = 3 को सन्तुष्ट करता है।
अतः m = 10 समीकरण का हल है।
प्रश्न 5.
निम्नलिखित पहेलियों को हल कीजिए। आप ऐसी पहेलियाँ स्वयं भी बना सकते हैं। मैं कौन हूँ?
(i) एक वर्ग के अनुदिश जाइए।
प्रत्येक कोने को तीन बार
गिनकर और उससे अधिक नहीं,
मुझमें जोड़िए और
ठीक चौंतीस प्राप्त कीजिए।
(ii) सप्ताह के प्रत्येक दिन के लिए,
मेरे से ऊपर गिनिए।
यदि आपने कोई गलती नहीं की है,
तो आप तेईस प्राप्त करेंगे।
(iii) मैं एक विशिष्ट संख्या हूँ।
मुझमें से एक छः निकालिए।
और क्रिकेट की एक टीम बनाइए।
(iv) बताइए, मैं कौन हूँ।
मैं एक सुन्दर संकेत दे रही हूँ
आप मुझे वापस पाएँगे।
यदि मुझे बाईस में से निकालेंगे।
हल :
(i) माना कि मैं ‘x’ हूँ।
वर्ग के चार कोने हैं। तीन बार प्रत्येक कोने को गिनने पर हम प्राप्त करते हैं,
3 × 4 = 12
अब प्रश्नानुसार, x + 12 = 34
या x + 12 – 12 = 34 – 12
या x + 0 = 22
⇒ x = 22
अतः मैं 22 हूँ।
(ii) माना कि मैं x हूँ।
प्रश्नानुसार, x + 7 = 23
या x + 7 – 7 = 23 – 7
x + 0 = 16
⇒ x = 16
(iii) माना कि विशिष्ट संख्या x है।
प्रश्नानुसार, x – 6 = 11
या x – 6 + 6 = 11 + 6
या x + 0 = 17
⇒ x = 17
अतः विशिष्ट संख्या 17 है
RBSE Solution for Class 6 Math Chapter 11 बीजगणित, Study Learner