Login
Login

RBSE Solution for Class 8 Math Chapter 7 घन और घनमूल

Spread the love

RBSE Solution for Class 8 Math Chapter 7 घन और घनमूल

पाठान्तर्गत प्रश्नोत्तर

पाठ्य-पुस्तक पृष्ठ संख्या # 117

भूमिका हार्डी-रामानुजन संख्या

प्रश्न 1.
1729 सबसे छोटी हार्डी-रामानुजन संख्या है। इस प्रकार की अनेक संख्याएँ हैं : उनमें से कुछ हैं 4104 (2,16; 9,5), 13832 (18, 20; 2,024)। कोष्ठकों में दी हुई संख्याएँ लेकर इसकी जाँच कीजिए।
हल:
जाँच –

  • 4104 = 4096 + 8 = 163 + 23 और
  • 4104 = 3375 + 729 = 153 + 93
  • 13832 = 5832 + 8000 = 183 + 203
  • और 13832 = 13824 + 8 = 243 + 23

घन –

प्रश्न 1.
1 सेमी भुजा वाले कितने घनों से 2 सेमी भजा वाला एक घन बनेगा?
हल:
2 सेमी भुजा वाला एक घन बनाने के लिए 1 सेमी भुजा वाले 2 x 2 x 2 = 8 घनों की आवश्यकता होगी।

प्रश्न 2.
1 सेमी भुजा वाले कितने घनों से 3 सेमी भुजा वाला एक घन बनेगा?
हल:
3 सेमी भुजा वाला एक घन बनाने के लिए 1 सेमी भुजा वाले 3 x 3 x 3 = 27 घनों की आवश्यकता होगी।

पाठ्य-पुस्तक पृष्ठ संख्या # 118

प्रश्न 1.
क्या आप बता सकते हैं कि इनको ये नाम क्यों दिए गए हैं?
हल:
हाँ, बता सकते हैं। इनको ये नाम इसलिए दिए गए हैं क्योंकि इसमें एक संख्या को स्वयं उसी से तीन बार गुणा किया जाता है।

प्रश्न 2.
नीचे 1 से 10 तक की संख्याओं के घन दिए गए हैं:


पूर्ण कीजिए।
हल:

प्रश्न 3.
यहाँ 1 से 1000 तक दस पूर्ण घन हैं। (इसकी जाँच कीजिए), 1 से 100 तक कितने पूर्ण धन हैं?
हल:
जाँच –

  • 1 = 1 x 1 x 1
  • 8 = 2 x 2 x 2
  • 27 = 3 x 3 x 3
  • 64 = 4 x 4 x 4
  • 125 = 5 x 5 x 5
  • 216 = 6 x 6 x 6
  • 343 = 7 x 7 x 7
  • 512 = 8 x 8 x 8
  • 729 = 9 x 9 x 9
  • 1000 = 10 x 10 x 10.

यहाँ स्पष्ट है कि संख्या को उसी संख्या से 3 बार गुणा करने पर संख्याएँ 1, 8, 27, 64, 125, 216, 343, 512, 729 और 1000 प्राप्त होती है।
∴ 1, 8, 27, 64, 125, 216, 343, 512, 729 और 1000 पूर्ण घन संख्याएँ हैं।
यहाँ 1 से 100 तक 1, 8, 27 और 64, 4 पूर्ण घन हैं।

प्रश्न 4.
सम संख्याओं के घनों को देखिए। क्या ये सभी सम हैं? आप विषम संख्याओं के घनों के बारे में क्या कह सकते हैं?
हल:
हाँ, सम संख्याओं के सभी घन सम हैं। विषम संख्याओं के घन विषम हैं।

पाठ्य-पुस्तक पृष्ठ संख्या # 119

प्रश्न 1.
ऐसी कुछ संख्याओं पर विचार कीजिए जिनकी इकाई का अंक 1 है। इनमें से प्रत्येक संख्या का घन ज्ञात कीजिए। उस संख्या के घन के इकाई के अंक के बारे में आप क्या कह सकते हैं, जिसकी इकाई का अंक 1 है।?
इसी प्रकार, उन संख्याओं के घनों की इकाई के अंकों के बारे में पता कीजिए, जिनकी इकाई के अंक 2,3,4 इत्यादि हैं।
हल:
1, 11, 21, 31,41,… आदि कुछ ऐसी संख्याएँ हैं जिनके इकाई का अंक 1 है। इन संख्याओं के घन हैं –

  • 13 = 1
  • 113 = 1331
  • 213 = 9261
  • 313 = 29791
  • 413 = 68921

आदि यहाँ यह स्पष्ट है कि ऐसी संख्याएँ जिनके इकाई का अंक 1 है उन संख्याओं के घनों का इकाई अंक भी 1 है।
इन संख्याओं के घन जिनके इकाई अंक 2, 3, 4, …… आदि हैं –

  • 2 → 23 = 8 123 = 1728 – 223 = 10648
  • 3 → 33 = 27 133 =2197 – 233 = 12167
  • 4 → 43 = 64 143 = 2744 – 243 = 13824
  • 5 → 53 = 125 153 = 3375 – 253 = 15625
  • 6 → 63 = 216 163 =4096 – 263 = 17576
  • 7 → 73 = 343 173 = 4913 – 273 = 19683
  • 8 → 83 = 512 183 = 5832 – 283 = 21952
  • 9 → 93 = 729 193 = 6859 – 293 =24389
  • 10 → 103 = 1000 203 = 8000 – 303 = 27000 .. इत्यादि।

यहाँ यह स्पष्ट है कि जिन संख्याओं के इकाई अंक 2, 3, 4, 5, 6, 7, 8, 9, 0 हैं उनके घनों के इकाई अंक क्रमशः 8, 7, 4, 5, 6, 3, 2, 9 और 0 हैं।

प्रयास कीजिए (क्रमांक 7.1)

प्रश्न 1.
निम्नलिखित संख्याओं में से प्रत्येक के घन के इकाई अंक ज्ञात कीजिए:

  1. 3331
  2. 8888
  3. 149
  4. 1005
  5. 1024
  6. 77
  7. 5022
  8. 53

हल:
संख्याओं के घन के इकाई अंक –

  1. 3331 → 13 = 1 x 1 x 1 = 1; इकाई अंक =1
  2. 8888 → 83 = 8 x 8 x 8 = 512; इकाई अंक = 2
  3. 149 → 93 = 9 x 9 x 9 = 729; इकाई अंक = 9
  4. 1005 → 53 = 5x5x5 = 125; इकाई अंक = 5
  5. 1024 → 43 = 4 x 4 x 4 = 64; इकाई अंक = 4
  6. 77 → 73 = 7 x 7 x 7 = 343; इकाई अंक = 3
  7. 5022 → 23 = 2 x 2 x 2 = 8; इकाई अंक = 8
  8. 53 → 33 = 3 x 3 x 3 = 27; इकाई अंक = 7

कुछ रोचक प्रतिरूप

क्रमागत विषम संख्याओं को जोड़ना

विषम संख्याओं के योगों के निम्नलिखित प्रतिरूप को देखिए –

  • 1 = 1 = 13
  • 3 + 5 = 8 = 23
  • 7 + 9 + 11 = 27 = 33
  • 13 + 15 + 17 + 19 = 64 = 43
  • 21 + 23 + 25 + 27 + 29 = 125 = 53

प्रश्न 1.
क्या यह रोचक नहीं है? योग 103 प्राप्त करने के लिए कितनी क्रमागत विषम संख्याओं की आवश्यकता होगी?
हल:
हाँ, यह रोचक है। उपर्युक्त प्रतिरूप से स्पष्ट है कि योग 103 प्राप्त करने के लिए 10 क्रमागत विषम संख्याओं की आवश्यकता होगी।

प्रयास कीजिए (क्रमांक 7.2)

प्रश्न 1.
उपर्युक्त प्रतिरूप का प्रयोग करते हुए, निम्नलिखित संख्याओं को विषम संख्याओं के योग के रूप में व्यक्त कीजिए –

  1. 63
  2. 83
  3. 73

हल:

  1. 63 = 31 + 33 + 35 + 37 + 39 + 41 = 216
  2. 83 = 57 + 59 + 61 + 63 + 65 + 67 + 69 + 71 = 512
  3. 73 = 43 + 45 + 47 + 49 + 51 + 53 + 55 = 343

प्रश्न 2.
निम्नलिखित प्रतिरूप को देखिए:

  • 23 – 13 = 1 + 2 x 1 x 3
  • 33 – 23 = 1 + 3 x 2 x 3
  • 43 – 33 = 1 + 4 x 3 x 3

उपर्युक्त प्रतिरूप का प्रयोग करते हुए, निम्नलिखित के मान ज्ञात कीजिए:

  1. 73 – 63
  2. 123 – 113
  3. 203 – 193
  4. 513 – 503

हल:
उपर्युक्त प्रतिरूप का प्रयोग करते हुए –

  1. 73 – 63 = 1 + 7 x 6 x 3 = 1 + 126 = 127
  2. 123 – 113 = 1 + 12 x 11 x 3 = 1 + 396 = 397
  3. 203 – 193 = 1 + 20 x 19 x 3 = 1 + 1140 = 1141
  4. 513 – 503 = 1 + 51 x 50 x 3 = 1 + 7650 = 7651

पाठ्य-पुस्तक पृष्ठ संख्या # 120

प्रश्न 1.
यदि किसी संख्या के अभाज्य गुणनखण्ड में प्रत्येक गुणनखण्ड तीन बार आता है, तो क्या वह संख्या एक पूर्ण घन होती है?
हल:
यदि किसी संख्या के अभाज्य गुणनखण्डन में प्रत्येक गुणनखण्ड तीन बार आता है, तो वह संख्या एक पूर्ण घन होती

प्रश्न 2.
क्या 729 पूर्ण घन है?
हल:
∴ 729 = 3 x 3 x 3 x 3 x 3 x 3
प्रश्न 3.
क्या आपको याद है कि am x bm = (a x b)m होता है?
हल:
हाँ, याद है कि am x bm = (a x b)m

प्रयास कीजिए (क्रमांक 7.3)

प्रश्न 1.
निम्नलिखित में से कौन-सी संख्याएँ पूर्ण घन हैं?

  1. 400
  2. 3375
  3. 8000
  4. 15625
  5. 9000
  6. 6859
  7. 2025
  8. 10648.

हल:
1.

संख्याओं के त्रिक बनाने पर 2 x 5 x 5 शेष रहता है।
अतः 400 पूर्ण घन नहीं है।

2.

यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अत: 3375 एक पूर्ण घन है।

3.

यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अतः 8000 एक पूर्ण घन है।

4.

यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अतः 15625 एक पूर्ण घन है।

5.

संख्याओं के त्रिक बनाने पर 3 x 3 शेष रहता है।
अत: 9000 पूर्ण घन नहीं है।

6.
MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Intext Questions img-8
यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अत: 6859 एक पूर्ण घन है।

7.

संख्याओं के त्रिक बनाने पर 3 x 5 x 5 शेष रहता है।
अत: 2025 एक पूर्ण घन नहीं है।

8.

यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अतः 10648 एक पूर्ण घन है।

पाठ्य-पुस्तक पृष्ठ संख्या # 121
सोचिए, चर्चा कीजिए और लिखिए (क्रमांक 7.1)

प्रश्न 1.
जाँच कीजिए कि निम्नलिखित में से कौन-सी संख्याएँ पूर्ण घन हैं –

  1. 2700
  2. 16000
  3. 64000
  4. 900
  5. 125000
  6. 36000
  7. 21600
  8. 10000
  9. 27000000
  10. 1000

इन पूर्ण घनों में आप क्या प्रतिरूप देखते हैं?
हल:
प्रत्येक संख्या के अभाज्य गुणनखण्ड करने पर,
1. 2700 = 2 x 2 x 3 x 3 x 3 x 5 x 5
संख्याओं के त्रिक बनाने पर 2 x 2 x 5 x 5 शेष रहता है।
अतः 2700 एक पूर्ण घन नहीं है।

2. 16000 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 5 x 5 x 5
संख्याओं के त्रिक बनाने पर 2 शेष रहता है।
अत: 16000 एक पूर्ण घन नहीं है।

3. 64000 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 5 x 5 x 5
यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अतः 64000 एक पूर्ण घन है।

4. 900 = 2 x 2 x 3 x 3 x 5 x 5
यहाँ हम त्रिक बनाकर देखते हैं, तो किसी भी संख्या का त्रिक नहीं बनता है।
अत: 900 एक पूर्ण घन नहीं है।

5. 125000 = 2 x 2 x 2 x 5 x 5 x 5 x 5 x 5 x 5
यहाँ प्रत्येक गुणनखण्ड तीन बार आया है।
अत: 125000 एक पूर्ण घन है।

6. 36000 = 2 x 2 x 2 x 2 x 2 x 3 x 3 x 5 x 5 x 5
संख्याओं के त्रिक बनाने पर 2 x 2 x 3 x 3 शेष रहता है।
अतः 36000 एक पूर्ण घन नहीं है।

7. 21600 = 2 x 2 x 2 x 2 x 5 x 5 x 5 x 5
संख्याओं के त्रिक बनाने पर 2 x 5 शेष रहता है।
अत: 21600 एक पूर्ण घन नहीं है।

8. 10000 = 2 x 2 x 2 x 2 x 5 x 5 x 5 x 5
संख्याओं के त्रिक बनाने पर 2 x 5 शेष रहता है।
अतः 10000 एक पूर्ण घन नहीं है।

9. 27000000 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 5 x 5 x 5 x 5 x 5 x 5
यहाँ प्रत्येक संख्या तीन-तीन बार आयी है।
अत: 27000000 एक पूर्ण घन है।

10. 1000 = 2 x 2 x 2 x 5 x 5 x 5
यहाँ प्रत्येक संख्या तीन बार आई है।
अत: 1000 एक पूर्ण घन है।

घन और घनमूल Ex 7.1

प्रश्न 1.
निम्नलिखित में से कौन-सी संख्याएँ पूर्ण घन – नहीं हैं?

  1. 216
  2. 128
  3. 1000
  4. 100
  5. 46656

हल:
1. 216 = 2 x 2 x 2 x 3 x 3 x 3
स्पष्ट है कि अभाज्य गुणनखण्ड समान गुणनखण्डों के त्रिक हैं और कोई गुणनखण्ड शेष नहीं है।
अत: 216 एक पूर्ण घन है।

2. 128 = 2 x 2 x 2 x 2 x 2 x 2 x 2
यहाँ अभाज्य गुणनखण्डों के त्रिक बनाने पर 2 शेष रहता है।
अतः 128 एक पूर्ण घन नहीं है।

3. 1000 = 2 x 2 x 2 x 5 x 5 x 5
स्पष्ट है कि अभाज्य गुणनखण्ड समान गुणनखण्डों के त्रिक हैं और कोई गुणनखण्ड शेष नहीं है।
अतः 1000 एक पूर्ण घन है।

4. 100 = 2 x 2 x 5 x 5
स्पष्ट है कि अभाज्य गुणनखण्ड समान गुणनखण्डों के त्रिक नहीं हैं तथा 2 x 2 x 5 x 5 शेष रहता है।
अतः 100 पूर्ण घन नहीं है।

5. 46656 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 x 3
स्पष्ट है कि अभाज्य गुणनखण्ड समान गुणनखण्डों के त्रिक हैं तथा कोई गुणनखण्ड शेष नहीं है।
अतः 46656 एक पूर्ण घन संख्या है।

प्रश्न 2.
वह सबसे छोटी संख्या ज्ञात कीजिए जिसमें निम्नलिखित संख्याओं को गुणा करने पर पूर्ण घन बन जाए:

  1. 243
  2. 256
  3. 72
  4. 675
  5. 100.

हल:
1.


243 के अभाज्य गुणनखण्ड करने पर, 243 = 3 x 3 x 3 x 3 x 3
यहाँ अभाज्य गुणनखण्डों के तीन-तीन का समूह बनाने पर 3 के समूह का एक गुणनखण्ड कम है।
अतः 3 से गुणा करने पर संख्या 243 पूर्ण घन बन जाएगी।

2.

256 के अभाज्य गुणनखण्ड करने पर, 256 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2
यहाँ अभाज्य गुणनखण्डों के तीन-तीन का समूह बनाने पर 2 के समूह का एक गुणनखण्ड कम है।
अतः 2 से गुणा करने पर संख्या 256 पूर्ण घन बन जाएगी।

3.
MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.1 img-3
72 के अभाज्य गुणनखण्ड करने पर, 72 = 2 x 2 x 2 x 3 x 3
यहाँ अभाज्य गुणनखण्डों के तीन-तीन का समूह बनाने पर 3 के समूह का एक गुणनखण्ड कम है।
अतः 3 से गुणा करने पर संख्या 72 पूर्ण घन बन जाएगी।

4.

675 के अभाज्य गुणनखण्ड करने पर, 675 = 3 x 3 x 3 x 5 x 5
यहाँ अभाज्य गुणनखण्डों के तीन-तीन के समूह बनाने पर 5 के समूह का एक गुणनखण्ड कम है।
अतः 5 से गुणा करने पर संख्या 675 पूर्ण घन बन जाएगी।

5.
MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.1 img-5
100 के अभाज्य गुणनखण्ड करने पर, 100 = 2 x 2 x 5 x 5
यहाँ अभाज्य गुणनखण्डों के तीन-तीन के समूह बनाने पर 2 के समूह का एक व 5 के समूह का एक गुणनखण्ड कम है।
अत: 2 x 5 = 10 से गुणा करने पर संख्या 100 पूर्ण घन बन जाएगी।

प्रश्न 3.
वह सबसे छोटी संख्या ज्ञात कीजिए जिससे निम्नलिखित संख्याओं को भाग देने पर भागफल एक पूर्ण घन प्राप्त हो जाए

  1. 81
  2. 128
  3. 135
  4. 192
  5. 704.

हल:
1.
MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.1 img-6
81 = 3 x 3 x 3 x 3
यहाँ अभाज्य गुणनखण्डों की तीन-तीन के समूह (त्रिक) बनाने पर गुणनखण्ड 3 अधिक है।
अत: 3 से भाग देने पर संख्या 81 पूर्ण घन बन जाएगी।

2.

128 = 2 x 2 x 2 x 2 x 2 x 2 x 2
यहाँ अभाज्य गुणनखण्डों के तीन-तीन के समूह (त्रिक) बनाने पर गुणनखण्ड 2 अधिक है।
अतः 2 से भाग देने पर संख्या 128 पूर्ण घन बन जाएगी।

3.
MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.1 img-8
135 = 3 x 3 x 3 x 5
यहाँ अभाज्य गुणनखण्डों के तीन-तीन के समूह (त्रिक) बनाने पर गुणनखण्ड 5 अधिक है।
अत: 5 से भाग करने पर संख्या 135 पूर्ण घन बन जाएगी।

4.

192 = 2 x 2 x 2 x 2 x 2 x 2 x 3
यहाँ अभाज्य गुणनखण्डों के तीन-तीन के समूह (त्रिक) बनाने पर गुणनखण्ड 3 अधिक है।
अतः 3 से भाग करने पर संख्या 192 पूर्ण घन बन जाएगी।

5.

704 = 2 x 2 x 2 x 2 x 2 x 2 x 11
यहाँ अभाज्य गुणनखण्डों के तीन-तीन के समूह त्रिक बनाने पर गुणनखण्ड 11 अधिक है।
अतः 11 से भाग देने पर संख्या 704 पूर्ण घन बन जाएगी।

प्रश्न 4.
परीक्षित प्लास्टिसिन का एक घनाभ बनाता है जिसकी भुजाएँ 5 cm, 2 cm और 5 cm हैं। एक घन बनाने के लिए ऐसे कितने घनाभों की आवश्यकता होगी?
हल:
घनाभ का आयतन = लम्बाई x चौड़ाई x ऊँचाई
5 x 2 x 5 सेमी3 = 2 x 5 x 5 सेमी3 घन बनाने के लिए आवश्यक घनाभों की संख्या
= 2 x 2 x 5 = 20 घनाभ

पाठ्य-पुस्तक पृष्ठ संख्या # 122

घनमूल

प्रश्न 1.
यदि किसी घन का आयतन 125 cm है, तो उसकी भुजा की लम्बाई क्या होगी?
हल:
घन का आयतन = 125 घन सेमी
घन की भुजा =

= 5 सेमी

पाठ्य-पुस्तक पृष्ठ संख्या # 123

सोचिए, चर्चा कीजिए और लिखिए (क्रमांक 7.2)

प्रश्न 1.
बताइए कि सत्य है या असत्य: किसी पूर्णांक m के लिए, m2 < m3 होता है। क्यों?
हल:
1. माना कि यदि m = 2, तब
m2 = 2 x 2 = 4 तथा m3 = 2 x 2 x 2 = 8
स्पष्ट है कि 4 < 8 अर्थात् m2 < m3

2. यदि m = 3, तब
m2 = 3 x 3 = 9 तथा m3 = 3 x 3 x 3 = 27
स्पष्ट है कि 9 < 27 अर्थात् m2 < m3

3. यदि m = 4, तब
m2 = 4 x 4 = 16 तथा m3 = 4 x 4 x 4 = 64
स्पष्ट है कि 16 < 64 अर्थात् m2 < m3

4. यदि m = 5, तब
m2 = 5 x 5 = 25 तथा m2 = 5 x 5 x 5= 125
स्पष्ट है कि 25 < 125 अर्थात् m2 < m3

5. परन्तु यदि m = 1, तब
m2 = 1 x 1 = 1 तथा m3 = 1 x 1 x 1 = 1
स्पष्ट है कि m2 = m3

6. यदि m = – 1, तब
m2 = (-1) x (-1) = 1
तथा m3 = (-1) x (-1) x (-1) = – 1
स्पष्ट है कि, 1 > – 1 अर्थात् m2 > m3

7. यदि m = -2, तब
m2 = (-2) x (-2) = 4
तथा m3 = (-2) (-2) (-2) = – 8
स्पष्ट है कि 4 > – 8 अर्थात् m2 > m3

8. यदि m = – 3, तब
m2 = (-3) x (-3)= 9
तथा m3 = (-3) (-3) (-3) = – 27
स्पष्ट है कि 9 > (-27) अर्थात् m2 > m3

9. परन्तु यदि m = 0, तब
m2 = 0 तथा m3 = 0
∴ m2 = m3
अतः हम कह सकते हैं कि ऋणात्मक पूर्णांक m के लिए m2 < m3 असत्य है।

 घन और घनमूल Ex 7.2

प्रश्न 1.
अभाज्य गुणनखण्डन विधि द्वारा निम्नलिखित में से प्रत्येक संख्या का घनमूल ज्ञात कीजिए –

  1. 64
  2. 512
  3. 10648
  4. 27000
  5. 15625
  6. 13824
  7. 110592
  8. 46656
  9. 175616
  10. 91125

हल:
1.

2.

3.

MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.2 img-3

4.

5.

MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.2 img-5

6.

7.

8.

9.

10.

MP Board Class 8th Maths Solutions Chapter 7 घन और घनमूल Ex 7.2 img-10

प्रश्न 2.
बताइए सत्य है या असत्य –

  1. किसी भी विषम संख्या का घन सम होता है।
  2. एक पूर्ण घन दो शून्यों पर समाप्त नहीं होता है।
  3. यदि किसी संख्या का वर्ग 5 पर समाप्त होता है, तो उसका घन 25 पर समाप्त होता है।
  4. ऐसा कोई पूर्ण घन नहीं है जो 8 पर समाप्त होता है।
  5. दो अंकों की संख्या का घन तीन अंकों वाली संख्या हो सकती है।
  6. दो अंकों की संख्या के घन में सात या अधिक अंक हो सकते हैं।
  7. एक अंक वाली संख्या का घन एक अंक वाली संख्या हो सकती है।

उत्तर:

  1. असत्य
  2. सत्य
  3. असत्य
  4. असत्य
  5. असत्य
  6. असत्य
  7. सत्य।

प्रश्न 3.
आपको यह बताया जाता है कि 1331 एक पूर्ण घन है। क्या बिना गुणनखण्ड किए आप यह अनुमान लगा सकते हैं कि इसका घनमूल क्या है? इसी प्रकार 4913, 12167 और 32768 के घनमूलों के अनुमान लगाइए।
हल:
1331 के लिए इस संख्या के दो समूह 1 और 331 हैं।
331 का इकाई अंक 1 है। अतः घनमूल का इकाई अंक 1 होगा।
दूसरे समूह का अंक 1 है।
∴ 13 = 1, अतः घनमूल का दहाई का अंक 1 होगा।
= 11
4913 के लिए
4913 के दो समूह बनाए 4 और 913
प्रथम समूह 913 का इकाई अंक 3 है। 3 किसी संख्या के स्थान पर तब आता है जब उसके घनमूल के इकाई का अंक 7 हो।
अतः घनमूल का इकाई अंक = 7
दूसरे समूह 4 के लिए
13 = 1 और 23 = 8
अतः 13 < 4 < 23
अतः घनमूल का दहाई अंक = 1
∴ = 17
12167 के लिए
12167 के दो समूह बनाए 12 और 167
प्रथम समूह 167 में इकाई का अंक 7 है, 7 पर समाप्त होने वाली संख्या का घनमूल = 3
अतः घनमूल का इकाई अंक = 3.
दूसरे समूह 12 के लिए
23 = 8 और 33 = 27
23 < 12 < 33 अतः घनमूल का दहाई का अंक = 2
∴ = 23
32768 के लिए
संख्या का प्रथम समूह 768 तथा दूसरा समूह 32.
प्रथम समूह की संख्या का इकाई अंक 8 है। 8 किसी संख्या के स्थान पर तब आता है जब उसके घनमूल का इकाई अंक 2 हो।
अतः घनमूल का इकाई अंक = 2
दूसरे समूह 32 के लिए
33 = 27 और 43 = 64
इसलिए 33 < 32 < 43 अतः घनमूल का दहाई का अंक = 3
∴ = 32

RBSE Solution for Class 8 Math Chapter 7 घन और घनमूल, Study Learner


Spread the love

Leave a Comment


error: Content is protected !!