Login
Login

NCERT Solution for Class 7 Math Chapter 7 त्रिभुजों की सर्वांगसमता

Spread the love

NCERT Solution for Class 7 Math Chapter 7 त्रिभुजों की सर्वांगसमता

NCERT Solution for Class 7 Math Chapter 7 त्रिभुजों की सर्वांगसमता

त्रिभुजों की सर्वांगसमता Ex 7.1

प्रश्न 1.
निम्न कथनों को पूरा कीजिए :
(a) दो रेखाखण्ड सर्वांगसम होते हैं यदि …….. ।
(b) दो सर्वांगसम कोणों में से एक की माप 70° है, दूसरे कोण की माप …….. है।
(c) जब हम ∠A = ∠B लिखते हैं, हमारा वास्तव में अर्थ होता है ……… ।
उत्तर:
(a) इनकी लम्बाइयाँ समान हों।
(b)70°
(c) m ∠A = m∠B

प्रश्न 2.
वास्तविक जीवन से सम्बन्धित सर्वांगसम आकारों के कोई दो उदाहरण दीजिए।
उत्तर:
उदाहरण – समान मान के दो नोट, एक ही ताले की दो चाबियाँ।

प्रश्न 3.
यदि सुमेलन ABC ↔ FED के अंतर्गत ∆ARC ≅ ∆FED तो त्रिभुजों के सभी संगत सर्वांगसम भागों को लिखिए।
उत्तर:
∆ABC तथा ∆FED के संगत सर्वांगसम भाग

प्रश्न 4.
यदि ∆DEF ≅ ∆BCA हो, तो ∆BCA के उन भागों को लिखिए जो निम्न के संगत हों :
(i) ∠E
(ii)
(iii) ∠F
(iv)
उत्तर:
∵ ∆DEF ≅ ∆BCA
∴ (i) ∠E ↔∠C
(ii) ↔
(iii) ∠F ↔ ∠A
(iv) ↔

पाठ्य-पुस्तक पृष्ठ संख्या # 152-153

प्रयास कीजिए

प्रश्न 1.
संलग्न आकृति में त्रिभुजों की भुजाओं की लम्बाइयाँ दर्शाई गई हैं। S.S.S. सर्वांगसमता के प्रतिबन्ध का प्रयोग करके बताइए कि कौन-कौन से त्रिभुज-युग्म सर्वांगसम हैं। सर्वांगसमता की स्थिति में उत्तर को सांकेतिक रूप में लिखिए।

हल:
(i) ∆ABC और ∆POR में,
AB = 1.5 cm, PQ = 1.5 cm, ∴ AB = PQ
BC = 2.5 cm, QR = 2.5 cm, ∴ BC = QR
AC = 2-2 cm, PR = 2-2 cm, ∴ AC = PR
चूँकि ∆ABC की तीन भुजाएँ ∆PQR की तीन भुजाओं के बराबर हैं। अत: दोनों त्रिभुज सर्वांगसम हैं। (S.S.S. सर्वांगसमता)
साथ ही, A ↔ P, B ↔ Q और C ↔ R
∴ ∆ABC ≅ ∆PQR

(ii) ∆DEF और ∆LMN में,
DE = 3.2 cm, MN = 3-2 cm, ∴ DE = MN
DF = 3.5 cm, LN = 3.5cm, ∴ DF = LN
EF = 3 cm, LM = 3 cm, ∴ EF = LM
चूँकि ∆DEF की तीन भुजाएँ ∆LMN की तीन भुजाओं के बराबर हैं। अत: दोनों त्रिभुज सर्वांगसम हैं। (S.S.S. सर्वांगसमता)
साथ ही, D ↔ N, E ↔ M, और F ↔ L
∴ ∆DEF ≅ ∆NML

(iii) ∆ABC और ∆POR में,
AC = 5 cm, PR = 5 cm, ∴ AC = PR
BC = 4 cm, PQ = 4 cm, ∴ BC = PQ
AB = 2 cm, QR = 2.5 cm, ∴ BC ≠ PQ
चूँकि, AB ≠ QR, अत: ∆ABC और ∆PQR सर्वांगसम नहीं हैं।

(iv) ∆ABD और ∆ADC में,
AB = 3.5 cm, AC = 3.5 cm, ∴ AB = AC
BD = 2.5 cm, CD = 2.5 cm, ∴ BD = CD
AD = AD (उभयनिष्ठ है)
चूँकि ∆ABD की तीन भुजाएँ ∆ADC की तीन भुजाओं के बराबर हैं। अत: दोनों त्रिभुज सर्वांगसम हैं (S.S.S सर्वांगसमता)।
साथ ही, A ↔ A, B ↔ C और D ↔ D
∆ABD ≅ ∆ACD

प्रश्न 2.
संलग्न आकृति में AB = AC और D, का मध्य-बिन्दु है।
(i) ∆ADB और ∆ADC में बराबर भागों के तीन युग्म बताइए।
(ii) क्या ∆ADB ≅ ∆ADC है ? कारण दीजिए।
(iii) क्या ∠B = ∠C है? क्यों?

हल:
यहाँ, AB = AC और D, BC¯¯¯¯¯¯¯¯ का मध्य बिन्दु है
अर्थात् BD = DC
(i) ∆ABD तथा ∆ADC से, बराबर भागों के तीन युग्म
AB = AC (दिया हुआ है)
AD = AD (उमयनिष्ठ है)
BD = DC (∵ D,CB का मध्य बिन्दु है)

(ii) ∆ABD की तीन भुजाएँ ∆ADC की तीन भुजाओं के बराबर हैं।
अतः सर्वांगसमता के S.S.S प्रतिबन्ध से,
∆ABD और ∆ADC सर्वांगसम हैं
और A ↔ A, B ↔ C, D ↔ D
∴ ∆ADB ≅ ∆ADC.

(iii) ∵ ∆ABC ≅ ∆ADC
∴ उनके संगत भाग बराबर हैं।
अर्थात् B ↔ C या ∠B = ∠C.

प्रश्न 3.
संलग्न आकृति में AC = BD और AD = BC हैं। निम्नलिखित कथनों में कौन-सा कथन सत्य है ?
(i) ∆ABC ≅ ∆ABD
(ii) ∆ABC ≅ ∆BAD

हल:
यहाँ AC = BD और AD = BC
(i) ∆ABC तथा ∆ABD में,
AB = AB (सही है)
BC = BD (सही नहीं है)
CA = DA (सही नहीं हैं)
अत: हम ∆ABC = ∆ABD नहीं लिख सकते।

(ii) ∆ABC तथा ∆BAD में,
AB = AB (उभयनिष्ठ)
BC = AD (दिया है)
CA = BD (दिया हैं)
यहाँ S.S.S. सर्वांगसमता है।
अत: ≅ABC ≅ ∆BAD लिख सकते हैं।
अतः
(i) ∴ ∆ABC ≅ ∆ABD असत्य है।
(ii) ∆ABC ≅ ∆BAD सत्य है।

सोचिए, चर्चा कीजिए एवं लिखिए

प्रश्न 1.
ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है।
∆ABC की एक अक्स प्रतिलिपि लीजिए और इसे भी ∆ABC का नाम दीजिए।
(i) ABC और ∆ACB में बराबर भागों के तीन युग्म बताइए।
(ii) क्या ∆ABC ≅ ∆ACB है ? क्यों अथवा क्यों नहीं ?
(iii) क्या ∠B = ∠C है? क्यों अथवा क्यों नहीं ?

हल:
∆ABC एक समद्विबाहु त्रिभुज है
जिसमें AB = AC, BC = CB तथा AC = AB.

(i) अब ∆ABC और ∆ACB में, बराबर भागों के तीन
युग्म – BC = BC (उभयनिष्ठ है)
AB = AC (दिया हुआ है)
AC = AB (रचना से)

(ii) हाँ, ∆ABC = ∆ACB.
क्योंकि ∆ABC की तीनों भुजाएँ ∆ACB की तीनों भुजाओं के बराबर हैं और A ↔ A, B ↔ C,C ↔ B.

(iii) हाँ, ∠B = ∠C ∴ B ↔ C

पाठ्य-पुस्तक पृष्ठ संख्या # 156 – 157

इन्हें कीजिए

प्रश्न 1.
∆DEF की भुजाओं और का अंतर्गत कोण कौन-सा है?
उत्तर:
∆DEF में, भुजाओं और के अंतर्गत कोण, ∠DEF है।

प्रश्न 2.
S.A.S. सर्वांगसमता प्रतिबन्ध का उपयोग करके आप ∆POR ≅ ∆FED स्थापित करना चाहते हैं। यह दिया गया है कि PQ = FE और RP = DF है। सर्वांगसमता को स्थापित करने के लिए अन्य किस तथ्य या सूचना की आवश्यकता होगी?
हल:
∆PQR ≅ ∆FED (सर्वांगसमता के प्रतिबन्ध S.A.S. के अनुसार)
PQ = FE और RP = DF (दिया है)
अन्य तथ्य और सूचना :
चूँकि S.A.S. प्रतिबन्ध के अन्तर्गत भुजाओं PQ और RP तथा FE और DF के बीच बने कोण भी बराबर होना चाहिए।
∴ ∠P = ∠F

प्रश्न 3.
संलग्न आकृति में त्रिभुजों के युग्मों में कुछ भागों की माप अंकित की गई है। S.A.S. सर्वांगसमता प्रतिबन्ध का उपयोग करके, इनमें वे युग्म छाँटिए जो सर्वांगसम हैं। सर्वांगसम त्रिभुजों की स्थिति में उन्हें सांकेतिक रूप में भी लिखिए।

हल:
(i) ∆ABC और ∆DEF में,
यहाँ, AB = DE = 2.5 cm
AC = DF = 2.8 cm
∠A = 80°,∠D = 70°
∴ ∠A ≠ ∠D
∴ ∆ABC और ∆DEF सर्वांगसम नहीं है।

(ii) ∆ABC और ∆POR में,
यहाँ AC = PR = 2.5 cm
BC = PQ = 3 cm
∠C = ∠P = 35°
∴ ∆ABC की दो भुजाएँ और उनके अंतर्गत कोण ∆POR की दो संगत भुजाओं और उनके अंतर्गत कोण के बराबर हैं।
अतः दोनों त्रिभुज सर्वांगसमता के S.A.S प्रतिबन्ध के आधार पर सर्वांगसम हैं।
साथ ही C ↔ P A ↔ R और B ↔ Q
∴ ∆ABC ≅ ∆RQP

(iii) ∆DEF तथा ∆PQR में,
यहाँ, EF = QR = 3 cm
DF = PQ = 3.5 cm
भुजाओं के अंतर्गत कोण ∠F = ∠Q = 40°
∴ ∆DEF की दो भुजाएँ और उनके अन्तर्गत कोण ∆PQR की दो संगत भुजाओं और उनके अन्तर्गत कोण के बराबर हैं।

अतः दोनों त्रिभुज सर्वांगसमता के S.A.S. प्रतिबन्ध के आधार पर सवांगसम हैं।
साथ ही, F ↔ Q.D ↔ P और E ↔ R
∴ ∆DEF ≅ ∆PRQ

(iv) ∆PQR और ∆RSP में,
PQ = R = 3.5 cm
PR = PR (उभयनिष्ठ है)
अंतर्गत कोण ∠QPR = ∠PRS = 30°
अत: ∆PQR की दो भुजाएँ और उनके अन्तर्गत कोण ∆RSP की दो संगत भुजाओं और उनके अन्तर्गत बीच के कोण के बराबर हैं।
अतः दोनों त्रिभुज सर्वांगसमता के प्रतिबन्ध S.A.S. के आधार पर सर्वांगसम हैं
साथ ही, P ↔ R, Q ↔ S
∴ ∆PQR ≅ ∆RSP

प्रश्न 4.
संलग्न आकृति में और एक दूसरे को O पर समद्विभाजित करते हैं।
(i) दोनों त्रिभुज AOC और BOD में बराबर भागों के तीन युग्मों को बताइए।
(ii) निम्न कथनों में से कौन-सा कथन सत्य है?
(a) ∆AOC ≅ ∆DOB
(b) ∆AOC ≅ ∆BOD

हल:
∵ और एक दूसरे को O पर समद्विभाजित करते हैं।
∴ AO = BO और CO = DO
साथ ही ऊर्ध्वाधर सम्मुख ∠AOC = ∠BOD
(i) ∆MOC तथा ∆BOD में, बराबर भागों के तीन युग्म –
AO = BO और CO = DO
∠AOC = ∠BOD

(ii) उपर्युक्त सम्बन्धों के आधार पर ∆AOC की दो भुजाएँ और उनके अन्तर्गत कोण ∆BOD की दो संगत भुजाओं और उनके अन्तर्गत कोण के बराबर हैं।
अत: सर्वांगसमता के गुण S.A.S. के आधार पर दोनों त्रिभुज सर्वांगसम हैं।
साथ ही,O ↔ O,A ↔ B, और C ↔ D
∴ ∆AOC ≅ ∆BOD
(a) कथन ∆AOC ≅ ∆DOB असत्य है।
(b) कथन ∆AOC ≅ ∆BOD सत्य है।

पाठ्य-पुस्तक पृष्ठ संख्या # 158

इन्हें कीजिए

प्रश्न 1.
∆MNP में कोणों M तथा N के अंतर्गत भुजा क्या है ?
उत्तर:
∆MNP में कोणों M तथा N के अंतर्गत भुजा MN है।

प्रश्न 2.
A.S.A. सर्वांगसमता प्रतिबन्ध का उपयोग करके आप ∆DEF ≅ ∆MNP स्थापित करना चाहते हैं। आपको दिया गया है कि ∠D = ∠M और ∠F = ∠P। इस सर्वांगसमता को स्थापित करने के लिए और कौन-कौन से तथ्य की आवश्यकता है ? (खाका आकृति बनाकर कोशिश कीजिए।)
हल:
∆DEF ≅ ∆MNP स्थापित करने के लिए A.S.A. सर्वांगसमता के प्रतिबन्ध के लिए हमें आवश्यकता होगी-भुजाएँ जिनसे ∠D और ∠F बनते हैं तथा समान भुजाएँ जिनसे ∠M और ∠P बनते हैं।
अर्थात् हमें आवश्यकता होगी

प्रश्न 3.
संलग्न आकृति में, त्रिभुज के कुछ भागों की माप अंकित की गई है। A.S.A. सर्वांगसमता प्रतिबन्ध का उपयोग करके बताइए कौन-से त्रिभुजों के युग्म सर्वांगसम हैं। सर्वांगसमता की स्थिति में, उत्तर को सांकेतिक रूप में लिखिए।

हल:
(i) ∆ABC और ∆DEF में,
AB = EF = 3.5 cm,
∠A = ∠F = 40°
और ∠B = ∠E = 60°.
∴ A.S.A. सर्वांगसमता प्रतिबन्ध से ये दो त्रिभुज सर्वांगसम हैं। साथ ही, A ↔ F,B ↔ E और C ↔ D
∴ ∆ABC ≅ ∆FED

(ii) ∆POR और ∆DEF में,
∆POR में, ∠P = 180° – (90° + 50°) = 40°
इसी प्रकार ∆DEF में, ∠F = 180° – (90° + 50°) = 40°
अब, PR = 3.3 cm, EF = 3.5 cm ∴ PR ≠ EF
∠R = ∠E = 50° और ∠P = ∠F = 40° ∴ ∠P = ∠F
∴ A.S.A. सर्वांगसमता प्रतिबन्ध से त्रिभुज सर्वांगसम नहीं है।

(iii) ∆PQR और ∆LMN में,
RQ = LN = 6 cm, ∠R = ∠L = 60° और ∠Q = ∠N = 30° ∴ A.S.A. सर्वांगसमता प्रतिबन्ध से ये दो त्रिभुज सर्वांगसम हैं
साथ ही, R ↔ L, Q ↔ N और P ↔ M
∴ ∆PQR ≅ ∆MNL

(iv) ∆ABC और ∆ABD में,
AB = AB (उभयनिष्ठ हैं),
∠BAC = ∠DBA = 30°
∠BAD = 45° + 30° = 75°
∠ABC = ∠45° + 30° = 75°
∴ A.S.A. सर्वांगसमता प्रतिबन्ध से ये दो त्रिभुज सर्वांगसम हैं।
साथ ही, A ↔ B, D ↔ C
∴ ∆ABC ≅ ∆BAD.

प्रश्न 4.
दो त्रिभुजों के कुछ भागों की निम्न माप दी गई है। A.S.A. सर्वांगसमता प्रतिबन्ध का उपयोग करके जाँचिए कि क्या ये दो त्रिभुज सर्वांगसम हैं या नहीं। सर्वांगसमता की स्थिति में उत्तर को सांकेतिक रूप में भी लिखिए।
∆DEF ∆PQR
(i) ∠D = 60°, ∠F = 80°, ∠Q = 60°, ∠R = 80°,
DF = 5 cm QR = 5 cm
(ii) ∠D = 60°, ∠F = 80°, ∠Q = 60°, ∠R = 80°,
DF = 6 cm, P = 6 cm
(iii) ∠E = 80°, ∠F = 30°, ∠P = 80°, PQ = 5 cm
EF = 5 cm, ∠R = 30°
हल:
(i) ∆DEF और ∆PQR में,
∠D = ∠Q = 60°, ∠F = ∠R = 80°
अन्तर्गत भुजा DF = अन्तर्गत भुजा QR = 5 cm
A.S.A. सर्वांगसमता प्रतिबन्ध से ये दो त्रिभुज सर्वांगसम हैं।
साथ ही, D ↔ Q. F ↔ R. और E ↔ P
∴ ∆DEF = ∆QPR

(ii) यहाँ ∆DEF तक ∆PQR में समान कोणों के बीच की भुजाएँ DF व QR समान नहीं हैं।
∴ दिए गये त्रिभुज सर्वांगसम नहीं हैं।

(iii) यहाँ ∆DEF तक ∆PQR में समान कोणों के बीच की भुजाएँ EF व PR समान नहीं हैं।
∴ दिए गये त्रिभुज सर्वांगसम नहीं हैं।

प्रश्न 5.
संलग्न आकृति में किरण AZ, ∠DAB तथा ∠DCB को समद्विभाजित करती है।

(i) त्रिभुज BAC और DAC में बराबर भागों के तीन युग्म बताइए।
(ii) क्या ∆BACE ≅ ∆DAC है ? कारण दीजिए।
(iii) क्या AB = AD है ? अपने उत्तर का उचित कारण दीजिए।
(iv) क्या CD = CB है? कारण दीजिए।
हल:
(i) ∵ AC, ∠DAB और ∠DCB का समद्विभाजक है।
∠DAC = ∠BAC
और ∠DCA = ∠BCA
अब, ∆BAC और ∆DAC में, बराबर भागों के युग्म हैं –
AC = AC (उभयनिष्ठ)
∠DAC = ∠BAC (AC समद्विभाजक है)
∠DCA = ∠BCA (AC समद्विभाजक है)

(ii) उपर्युक्त सम्बन्धों से, ये दो त्रिभुज सर्वांगसम हैं (A.S.A. सर्वांगसमता)
साथ ही, A ↔ A, C ↔ C और D ↔ B
∴ ∆BAC ≅ ∆DAC

(iii) ∴ ∆BAC ≅ ∆DAC
∴ संगत भाग बराबर हैं।
अर्थात् AB = AD

(iv) ∴ C ↔ C और A ↔ A तथा AC = AC
अर्थात् ∆BAC ≅ ∆DAC
∴ संगत भाग बराबर हैं,
अर्थात् CD = CB

पाठ्य-पुस्तक पृष्ठ संख्या # 160-161

इन्हें कीजिए

प्रश्न 1.
संलग्न आकृति में त्रिभुजों के कुछ भागों की माप दी गई है। R.H.S. सर्वांगसमता प्रतिबन्ध का उपयोग करके बताइए कि कौन-कौन से त्रिभुज युग्म सर्वांगसम हैं। सर्वांगसम त्रिभुजों की स्थिति में उन्हें सांकेतिक रूप में लिखिए।

हल:
(i) समकोण ∆PQR तथा समकोण ∆DEF में,
कर्ण PR = कर्ण DF = 6 cm
भुजा PQ = 3 cm ≠ भुजा DE = 2.5 cm
∴ ∆POR और ∆DEF सर्वांगसम नहीं हैं।

(ii) समकोण ∆ABC और समकोण ∆ABD में, कर्ण AB = कर्ण BA = 3.5 cm (उभयनिष्ठ) भुजा AC = भुजा BD = 2 cm तथा ∠C = ∠D = 90°
∴ समकोण त्रिभुजों की R.H.S. सर्वांगसमता के गुण के अनुसार त्रिभुज सर्वांगसम हैं।
साथ ही, A ↔ B, B ↔ A, C ↔ D
∴ ∆ABD ≅ ∆BAC

(iii) समकोण ∆ABC और समकोण ∆ADC में,
कर्ण AC = कर्ण AC (उभयनिष्ठ)
भुजा AD = भुजा AB = 3.6 cm
तथा ∠B = ∠D = 90°
∴ समकोण त्रिभुजों की R.H.S. सर्वांगसमता के गुण के अनुसार त्रिभुज सर्वांगसम हैं।
साथ ही, A ↔ A,C ↔ C,B ↔ D
∆ABC ≅ ∆ADC

(iv) समकोण ∆PQS और समकोण ∆PRS में,
कर्ण PQ = कर्ण PR = 3 cm
भुजा PS = भुजा PS (उभयनिष्ठ)
तथा ∠PSQ तथा ∠PSR = 90°
∴ समकोण त्रिभुजों की R.H.S. सर्वांगसमता के गुण के अनुसार त्रिभुज सर्वांगसम हैं।
साथ ही P ↔ P, S ↔ S, Q ↔ R
∆PQS ≅ ∆PRS.

प्रश्न 2.
R.H.S. सर्वांगसमता प्रतिबन्ध से ∆ABC ≅ ∆RPO स्थापित करना है। यदि यह दिया गया हो कि ∠B = ∠P = 90° और AB = RP है, तो अन्य किस और सूचना की आवश्यकता है ?
हल:
R.H.S. सर्वांगसमता प्रतिबन्ध द्वारा ∠ABC ≅ ∠RPO स्थापित करने के लिए हमें कर्ण AC = कर्ण RQ को समान करने की आवश्यकता होगी।

प्रश्न 3.
संलग्न आकृति में, BD और CE, ∆ABC के शीर्षलम्ब हैं और BD = CE.

(i) ∆CBD और ∆BCE में, बराबर भागों के तीन युग्म बताइए।
(ii) क्या ∠CBD ≅ ∠BCE है ? क्यों अथवा क्यों नहीं ?
(iii) क्या ∆DCB = ∆EBC है ? क्यों या क्यों नहीं?
हल:
(i) ∆CBD और ∆BCE में बराबर भागों के तीन युग्म –
कर्ण BC = कर्ण BC (उभयनिष्ठ)
भुजा BD = भुजा CE
∠BEC = ∠BDC = प्रत्येक 90°

(ii)∴∠D = ∠E, CB = BC तथा BD = CE
अत: RHS सर्वांगसमता से
हाँ, ∆CBD ≅ ∆BCE,

(iii)∴ ∆CBD ≅ ∆BCE
∴ उनके संगत भाग बराबर हैं।
अब, हाँ, ∠DCB = ∠EBC

प्रश्न 4.
∆ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC और AD इसका शीर्ष लम्ब है।
(i) ∆ADB और ∆ADC में, बराबर भागों के-तीन युग्म बताइए।
(ii) क्या ∆ADB ≅ ∆ADC है ? क्यों अथवा क्यों नहीं ?
(iii) क्या ∠B = ∠C है ? क्यों या क्यों नहीं ?
(iv) क्या BD = CD है? क्यों या क्यों नहीं?

हल:
(i) ∆ADB और ∆ADC में, बराबर भागों के तीन युग्म हैं –
AD = AD (उभयनिष्ठ)
कर्ण AB = कर्ण AC
∠ADB = ∠ADC (प्रत्येक 90°)

(ii) ∴ AB = AC, AD = AD, D ↔ D
अब, हाँ, ∆ADB ≅ ∆ADC

(iii) हाँ, ∠B = ∠C
∴ ∆ADB ≅ ∆ADC
∴ संगत भाग समान हैं, ∴ ∠B = ∠C

(iv) साथ ही, हाँ, =
∆ADB ≅ ∆ADC, ∴ संगत भाग समान हैं

त्रिभुजों की सर्वांगसमता Ex 7.2

प्रश्न 1.
निम्न में आप कौन-से सर्वांगसम प्रतिबन्धों का प्रयोग करेंगे ?
(a) दिया है : AC = DF AB = DE, BC = EF

इसलिए, ∆ABC ≅ ∆DEF
(b) दिया है : ZX = RP RQ = ZY
∠PRQ = ∠XZY
इसलिए, ∆PQR = ∆XYZ
(c) दिया है: ∠MLN = ∠FGH
∠NML = ∠GFH
ML = FG
इसलिए, ∆LMN ≅ ∆GFH
(d) दिया है: EB = DB
AE = BC
∠A = ∠C
इसलिए, ∆ABE ≅ ∆CDB
उत्तर:
(a) S.S.S. सर्वांगसमता प्रतिबन्ध द्वारा,
∆ABC ≅ ∆DEE
(b) S.A.S. सर्वांगसमता प्रतिबन्ध द्वारा,
∆PQR ≅ ∆XYZ.
(c) A.S.A. सर्वांगसमता प्रतिबन्ध द्वारा,
∆LMN ≅ ∆GFH.
(d) R.H.S. सर्वांगसमता प्रतिबन्ध द्वारा,
∆ABE ≅ ∆CDB.

प्रश्न 2.
आप ∆ART ≅ ∆PEN दर्शाना चाहते हैं।
(a) यदि आप S.S.S. सर्वांगसमता प्रतिबन्ध का प्रयोग करें तो आपको दर्शाने की आवश्यकता है:
(i) AR =
(ii) RT =
(iii) AT =
(b) यदि यह दिया गया है कि ∠T = ∠N और आपको S.A.S. प्रतिबन्ध का प्रयोग करना है, तो आपको आवश्यकता होगी:
(i) RT = और (ii) PN =

(c) यदि यह दिया गया है कि AT = PN और आपको A.S.A. प्रतिबन्ध का प्रयोग करना है, तो आपको आवश्यकता होगी:
(i) ? =
(ii) ? =
हल:
(a) ∆ART ≅ ∆PEN को S.S.S. सर्वांगसमता प्रतिबन्ध द्वारा दर्शाने के लिए दर्शाना होगा –
(i) AR = PE
(ii) RT = EN
(iii) AT = PN
(b) ∴ ∠T = ∠N
∴ (i) RT = EN
(ii) PN = AT
(c) यदि AT = PN और A.S.A. सर्वांगसमता के लिए आवश्यकता होगी –
(i) ∠RAT = ∠EPN
(ii) ∠ATR = ∠PNE

प्रश्न 3.
आपको ∆AMP ≅ ∆AMQ दर्शाना है। निम्न चरणों में, रिक्त कारणों को भरिए:

उत्तर:
(i) दिया है
(ii) दिया है
(iii) उभयनिष्ठ
(iv) S.A.S. सर्वांगसमता प्रतिबन्ध।

प्रश्न 4.
∆ABC में ∠L = 30°, ∠B = 40° और ∠C = 110°, ∆PQR में, ∠P = 30° ∠Q = 40° और ∠R = 110°. एक विद्यार्थी कहता है कि A.A.A. सर्वांगसमता प्रतिबन्ध से ∆ABC ≅ ∆PQR है।
क्या यह कथन सत्य है ? क्यों या क्यों नहीं ?
हल:
यहाँ ∆MBC के तीनों कोण ∆PQR के तीनों कोणों के बराबर हैं। तो यह आवश्यक नहीं कि त्रिभुज सर्वांगसम हों क्योंकि यदि ∆ABC में, भुजा BC = 3.0-सेमी तथा ∆POR में, भुजा QR = 4.0 सेमी हो, तो इस दशा में त्रिभुज के संगत कोण तो बराबर हैं परन्तु यह सर्वांगसम नहीं हैं। क्योंकि BC ≠ QR अतः विद्यार्थी की A.A.A. सर्वांगसमता का प्रतिबन्ध तर्कसंगत नहीं है।

प्रश्न 5.
संलग्न आकृति में दो त्रिभुज ART तथा OWN सर्वांगसम हैं जिनके संगत भागों को अंकित किया गया है। हम लिख सकते हैं ∆RAT = ?

हल:
हम लिख सकते हैं ∆RAT ≅ ∆WON
(∴ O ↔ A, N ↔ T, W ↔ R)

प्रश्न 6.
कथनों को पूरा कीजिए –

∆BCA ≅ ? ∆QRS ≅ ?
उत्तर:
∆BCA ≅ ∆ABTA, ∆QRS = ∆TPQ

प्रश्न 7.
एक वर्गांकित शीट पर, बराबर क्षेत्रफलों वाले दो त्रिभुजों को इस प्रकार बनाइए कि
(i) त्रिभुज सर्वांगसम हों
(ii) त्रिभुज सर्वांगसम न हों। आप उनके परिमाप के बारे में क्या कह सकते हैं?
हल:

(i) चित्र 7.19 (1) में,
∆ ABC का क्षेत्रफल = ∆EDC का क्षेत्रफल = × 3 × 4 = 6 cm2
∆ ABC का परिमाप = 3 + 4 + 5 = 12 cm
∆ EDE का परिमाप = 3 + 4 + 5 = 12 cm
∆ ABC का परिमाप = ∆EDC का परिमाप,
अतः चित्र 7.19 में, ∆ABC ≅ ∆EDC है।
(ii) चित्र 7.19 (ii) में,
∆ PQR का क्षेत्रफल = × PQ × PR
= × 3 × 4 = 6 cm2
तथा ∆ PSR का क्षेत्रफल = × ST × PR
× 3 × 4 = 6 cm2

∴ ∆ POR का क्षेत्रफल = ∆ PSR का क्षेत्रफल
अब, ∆ PQR का परिमाप = 3 + 4 + 5 = 12 cm
तथा ∆ PRS का परिमाप = 4 + 35 + 4 = 11’5 cm
∆ POR का परिमाप ≠ ∆PRS का परिमाप
अत: चित्र 7.19 (ii) में ∆POR व ∆PRS सर्वांगसम नहीं हैं क्योंकि इनके क्षेत्रफल तो समान हैं परन्तु परिमाप समान नहीं

प्रश्न 8.
संलग्न आकृति में एक सर्वांगसम भागों का एक अतिरिक्त युग्म बताइए जिससे ∆ABC और ∆PQR सर्वांगसम हो जाएँ। आपने किस प्रतिबन्ध का प्रयोग किया ?

हल:
यहाँ, ∆ABC ≅ ∆PQR
∴ ∠B = ∠Q IR ∠C = ∠R
∴ सर्वांगसम भागों का अतिरिक्त युग्म –
BC = QR
उत्तर हमने यहाँ A.S.A. सर्वांगसम प्रतिबन्ध का प्रयोग किया है।

प्रश्न 9.
चर्चा कीजिए, क्यों?
∆ABC ≅ ∆FED.

हल:
∠B = ∠E = 90°,
∠A = ∠F (दिया हुआ है)
∴ ∠C = ∠D (तीसरा कोण)
BC = DE (दिया हुआ है)
अत: ASA सर्वांगसम प्रतिबन्ध से ∆ ABC ≅ ∆ FED परिणाम प्राप्त होगा।

पाठ्य-पुस्तक पृष्ठ संख्या # 163

ज्ञानवर्धक क्रियाकलाप

प्रश्न 1.
अलग-अलग माप के वर्गों के कट-आउट सोचिए। अध्यारोपण विधि का प्रयोग वर्गों की सर्वांगसमता के लिए प्रतिबन्ध ज्ञात करने के लिए कीजिए। कैसे “सर्वांगसम भागों” की संकल्पना सर्वांगसम के अंतर्गत उपयोग होती है ? क्या यहाँ संगत भुजाएँ हैं ? क्या यहाँ संगत विकर्ण हैं ?
हल:
हम जानते हैं कि समतल आकृतियाँ सर्वांगसम होती हैं। जब आकृतियों के आकार समान होते हैं तो वे एक-दूसरे की ठीक-ठीक पूरा ढक लेती हैं। सभी वर्ग समान आकृति के होते हैं लेकिन वर्ग का आकार उनकी भुजाओं की लम्बाई पर निर्भर करता है।

ABCD व PQRS दो वर्ग हैं। वर्ग ABCD के कट-आउट को वर्ग PQRS के ऊपर इस प्रकार रखते हैं कि शीर्ष A, वर्ग PQRS के शीर्ष P पर और भुजा AB भुजा PQ पर आए।

स्पष्ट है कि ABCD वर्ग PQRS को पूर्णतया ढक लेता है।

यदि AB = PQ तो दो वर्ग सर्वागसम होंगे यदि उनकी भुजाओं की लम्बाइयाँ समान हों।

अत: वर्ग ABCD ≅ वर्ग PORS यदि AB = PQ

हम एक वर्ग की किसी भी भुजा को दूसरे वर्ग की किसी भुजा के संगत ले सकते हैं। दूसरी संगत भुजाओं के युग्म इसी प्रकार बदल जाएँगे। यह बात विकर्णों के लिए भी सत्य है।

प्रश्न 2.
यदि आप वृत्त लेते हैं तो क्या होता है ? दो वृत्तों की सर्वांगसमता के लिए प्रतिबन्ध क्या है ? क्या, आप फिर अध्यारोपण विधि का प्रयोग कर सकते हैं ? पता लगाइए।
हल:
सभी वृत्तों की समान आकृति होती है और वृत्त का आकार वृत्त की त्रिज्या पर निर्भर करता है। यहाँ दो वृत्त C1 व C2 हैं। इनमें से किसी एक वृत्त का कट-आउट (माना वृत्त C2 का) वृत्त C1 पर रखते हैं। वृत्त C2 वृत्त C1 को पूरी तरह ठीक-ठीक ढल लेता है। यदि दोनों वृत्तों की त्रिज्याएँ समान होंगी तो दोनों वृत्त सर्वांगसम होंगे।

वृत्त C1 वृत्त C2 जबकि C1 वृत्त की त्रिज्या = C2 वृत्त की त्रिज्या।

प्रश्न 3.
इस संकल्पना को बढ़ाकर तल की दूसरी आकृतियाँ जैसे समषद्भुज इत्यादि के लिए प्रयत्न कीजिए।
हल:
हम जानते हैं कि समतल आकृतियाँ सर्वांगसम होती हैं यदि वे एक-दूसरे को पूर्णतया ढक लेती हैं। सभी समषट्भुज समान आकृति के होते हैं और इनका आकार समषट्भुज की भुजा की लम्बाई पर निर्भर करता है। दो समषट्भुज ABCDEF व PQRSTU लेते हैं। इनके कट-आउट लेते हैं जिनमें से प्रत्येक की सभी भुजाएँ समान हों।

अब PQRSTU के कट-आउट को ABCDEF पर इस प्रकार रखते हैं कि PQRSTU का बिन्दु P बिन्दु A पर आए तथा भुजा PQ भुजा AB पर आए। यदि PQ = AB तो समषट्भुज PQRSTU, समषट्भुज ABCDEF को पूर्णतया ठीक-ठीक ढक लेता है। अत: दो समषट्भुज सर्वांगसम होते हैं यदि इनकी भुजाओं की लम्बाई समान हो।

अत: समषट्भुज ABCDEF = समषट्भुज PQRSTU.

प्रश्न 4.
एक त्रिभुज की दो सर्वांगसम प्रतिलिपियाँ लीजिए। कागज को मोड़कर पता लगाइए कि क्या उनके शीर्ष लम्ब बराबर हैं ? क्या उनकी माध्यिकाएँ समान हैं ? आप उनके परिमाप तथा क्षेत्रफल के बारे में क्या कह सकते हैं ?
हल:
माना ∆ABC ≅ ∆DEF
कागज को मोड़कर प्रत्येक त्रिभुज के शीर्ष बनाए। हम देखते हैं कि
AL = DP BM = EQ और CN = FR
अर्थात् संगत शीर्ष लम्ब समान हैं।

इसी प्रकार हम देख सकते हैं कि सर्वांगसम त्रिभुजों में संगत माध्यिकाएँ समान होती हैं और इनके परिमाप व क्षेत्रफल समान होते हैं।

NCERT Solution for Class 7 Math Chapter 7 त्रिभुजों की सर्वांगसमता, Study Learner


Spread the love

Leave a Comment


error: Content is protected !!